Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper we construct an explicit approximation for the Lagrangian hydrodynamics equations equipped with an arbitrary equation of state. The approximation of the state variable is done with piecewise constant finite elements and the approximation of the mesh motion is done with higher-order continuous finite elements. The method is invariant-domain preserving and locally mass conservative. The purpose of this method is to be used in combination with higher-order methods to make them invariant domain preserving as well.more » « lessFree, publicly-accessible full text available June 1, 2026
-
The paper focuses on first-order invariant-domain preserving approximations of hyperbolic systems. We propose a new way to estimate the artificial viscosity that has to be added to make explicit, conservative, consistent numerical methods invariant-domain preserving and entropy inequality compliant. Instead of computing an upper bound on the maximum wave speed in Riemann problems, we estimate a minimum wave speed in the said Riemann problems such that the approximation satisfies predefined invariant-domain properties and predefined entropy inequalities. This technique eliminates non-essential fast waves from the construction of the artificial viscosity, while preserving pre-assigned invariant-domain properties and entropy inequalities.more » « less
-
Abstract An invariant domain preserving arbitrary Lagrangian-Eulerian method for solving non-linear hyperbolic systems is developed. The numerical scheme is explicit in time and the approximation in space is done with continuous finite elements. The method is made invariant domain preserving for the Euler equations using convex limiting and is tested on various benchmarks.more » « less
-
This work studies three multigrid variants for matrix-free finite-element computations on locally refined meshes: geometric local smoothing, geometric global coarsening (both h -multigrid), and polynomial global coarsening (a variant of p -multigrid). We have integrated the algorithms into the same framework—the open source finite-element library deal.II —, which allows us to make fair comparisons regarding their implementation complexity, computational efficiency, and parallel scalability as well as to compare the measurements with theoretically derived performance metrics. Serial simulations and parallel weak and strong scaling on up to 147,456 CPU cores on 3,072 compute nodes are presented. The results obtained indicate that global-coarsening algorithms show a better parallel behavior for comparable smoothers due to the better load balance, particularly on the expensive fine levels. In the serial case, the costs of applying hanging-node constraints might be significant, leading to advantages of local smoothing, even though the number of solver iterations needed is slightly higher. When using p - and h -multigrid in sequence ( hp -multigrid), the results indicate that it makes sense to decrease the degree of the elements first from a performance point of view due to the cheaper transfer.more » « less
An official website of the United States government
